Using graph theory metrics to assess in vivo brain functional network organization Colon-Perez and colleagues observed that 24 h after MDPV administration there was an increased clustering coefficient, rich club index, and average path length. Increases in these metrics suggests that MDPV produces a prolonged pattern of correlated activity characterized by greater interactions between subsets of high degree nodes but a reduced interaction with regions outside this core subset. Further analysis revealed that the core set of nodes include prefrontal cortical, amygdala, hypothalamic, somatosensory and striatal areas. At the molecular level, MDPV downregulated the dopamine transporter (DAT) in striatum and produced a shift in its subcellular distribution, an effect likely to involve rapid internalization at the membrane. These new findings suggest that potent binding of MDPV to DAT may trigger internalization and a prolonged alteration in homeostatic regulation of DA and functional brain network reorganization. We propose that the observed MDPV-induced network reorganization and DAergic changes may contribute to previously reported adverse behavioral responses to MDPV.